最新なSnowflake DSA-C03問題集(289題)、真実試験の問題を全部にカバー!

Pass4Testは斬新なSnowflake SnowPro Advanced DSA-C03問題集を提供し、それをダウンロードしてから、DSA-C03試験をいつ受けても100%に合格できる!一回に不合格すれば全額に返金!

DSA-C03 actual test
  • 試験コード:DSA-C03
  • 試験名称:SnowPro Advanced: Data Scientist Certification Exam
  • 問題数:289 問題と回答
  • 最近更新時間:2025-05-22
  • PDF版 Demo
  • PC ソフト版 Demo
  • オンライン版 Demo
  • 価格:12900.00 5999.00  
質問 1:
You are analyzing customer transaction data in Snowflake to identify fraudulent activities. The 'TRANSACTION AMOUNT' column exhibits a right-skewed distribution. Which of the following Snowflake queries is MOST effective in identifying outliers based on the Interquartile Range (IQR) method, specifically targeting unusually large transaction amounts? Assume IQR is already calculated as variable and QI as and Q3 as in snowflake session.
A. SELECT TRANSACTION ID FROM TRANSACTIONS WHERE TRANSACTION_AMOUNT < qi - (1.5 iqr);
B. SELECT TRANSACTION ID FROM TRANSACTIONS WHERE TRANSACTION AMOUNT > q3 + (1.5 iqr);
C. SELECT TRANSACTION ID FROM TRANSACTIONS WHERE TRANSACTION_AMOUNT > (SELECT + 3 FROM TRANSACTIONS);
D. SELECT TRANSACTION ID FROM TRANSACTIONS WHERE TRANSACTION_AMOUNT > (SELECT MEDIAN(TRANSACTION AMOUNT) FROM TRANSACTIONS);
E. SELECT TRANSACTION ID FROM TRANSACTIONS WHERE TRANSACTION_AMOUNT > (SELECT WITHIN GROUP (ORDER BY TRANSACTION_AMOUNT) FROM TRANSACTIONS);
正解:B
解説: (Pass4Test メンバーにのみ表示されます)

質問 2:
A data scientist is building a churn prediction model using Snowflake data'. They want to load a large dataset (50 million rows) from a Snowflake table 'customer_data' into a Pandas DataFrame for feature engineering. They are using the Snowflake Python connector. Given the code snippet below and considering performance and memory usage, which approach would be the most efficient for loading the data into the Pandas DataFrame? Assume you have a properly configured connection and cursor 'cur'. Furthermore, assume that the 'customer id' column is the primary key and uniquely identifies each customer. You are also aware that network bandwidth limitations exist within your environment. ```python import snowflake.connector import pandas as pd # Assume conn and cur are already initialized # conn = snowflake.connector.connect(...) # cur = conn.cursor() query = "SELECT FROM customer data```
A. ```python cur.execute(query) df = pd.read_sql(query, conn)
B. ```python import snowflake.connector import pandas as pd import pyarrow import pyarrow.parquet # Enable Arrow result format conn.cursor().execute("ALTER SESSION SET PYTHON USE ARROW RESULT FORMAT-TRUE") cur.execute(query) df =
C. ```python cur.execute(query) results = cur.fetchmany(size=1000000) df_list = 0 while results: df_list.append(pd.DataFrame(results, for col in cur.description])) results = cur.fetchmany(size=1000000) df = pd.concat(df_list, ignore_index=True)
D. ```python cur.execute(query) df = pd.DataFrame(cur.fetchall(), columns=[col[0] for col in cur.description])
E. ```python with conn.cursor(snowflake.connector.DictCursor) as cur: cur.execute(query) df = pd.DataFrame(cur.fetchall())
正解:B
解説: (Pass4Test メンバーにのみ表示されます)

質問 3:
A data scientist is tasked with creating features for a machine learning model predicting customer churn. They have access to the following data in a Snowflake table named 'CUSTOMER ID, 'DATE, 'ACTIVITY _ TYPE' (e.g., 'login', 'purchase', 'support_ticket'), and 'ACTIVITY VALUE (e.g., amount spent, duration of login). Which of the following feature engineering strategies, leveraging Snowflake's capabilities, could be useful for predicting customer churn? (Select all that apply)
A. Directly use the ACTIVITY TYPE column as a categorical feature without any transformation or engineering.
B. Create a feature representing the number of days since the customer's last login using "DATEDIFF and window functions.
C. Use 'APPROX COUNT DISTINCT to estimate the number of unique product categories purchased by each customer within the last 3 months to create a features.
D. Create features that capture the trend of customer activity over time (e.g., increasing or decreasing activity) using LACY and 'LEAD' window functions.
E. Calculate the recency, frequency, and monetary value (RFM) for each customer using window functions and aggregate functions.
正解:B,C,D,E
解説: (Pass4Test メンバーにのみ表示されます)

質問 4:
You are tasked with preparing a Snowflake table named 'PRODUCT REVIEWS' for sentiment analysis. This table contains columns like 'REVIEW ID, 'PRODUCT ID', 'REVIEW TEXT', 'RATING', and 'TIMESTAMP'. Your goal is to remove irrelevant fields to optimize model training. Which of the following options represent valid and effective strategies, using Snowpark SQL, for identifying and removing irrelevant or problematic fields from the 'PRODUCT REVIEWS' table, considering both storage efficiency and model accuracy? Assume that the model only need review text and review id and the rating.
A. Dropping rows with 'NULL' values in REVIEW_TEXT and then dropping the 'PRODUCT_ID' and 'TIMESTAMP' columns using 'ALTER TABLE. SQL: 'CREATE OR REPLACE TABLE PRODUCT REVIEWS AS SELECT FROM PRODUCT REVIEWS WHERE REVIEW TEXT IS NOT NULL; ALTER TABLE PRODUCT REVIEWS DROP COLUMN PRODUCT ID; ALTER TABLE PRODUCT REVIEWS DROP COLUMN TIMESTAMP;'
B. Using 'ALTER TABLE DROP COLUMN' to directly remove 'TIMESTAMP column, which is deemed irrelevant for the sentiment analysis model. SQL: 'ALTER TABLE PRODUCT REVIEWS DROP COLUMN TIMESTAMP;'
C. Creating a VIEW that only selects the 'REVIEW _ TEXT , 'REVIEW_ID', and 'RATING' columns, effectively hiding the irrelevant columns from the model. SQL: 'CREATE OR REPLACE VIEW REVIEWS FOR ANALYSIS AS SELECT REVIEW TEXT, REVIEW ID, RATING FROM PRODUCT REVIEWS;'
D. All of the above.
E. creating a new table 'REVIEWS_CLEANED containing only the relevant columns CREVIEW_TEXT , 'REVIEW_ID' , and 'RATING') using 'CREATE TABLE AS SELECT. SQL: 'CREATE OR REPLACE TABLE REVIEWS CLEANED AS SELECT REVIEW TEXT, REVIEW ID, RATING FROM PRODUCT REVIEWS;'
正解:D
解説: (Pass4Test メンバーにのみ表示されます)

質問 5:
You are tasked with identifying fraudulent transactions from unstructured log data stored in Snowflake. The logs contain various fields, including timestamps, user IDs, and transaction details embedded within free-text descriptions. You plan to use a supervised learning approach, having labeled a subset of transactions as 'fraudulent' or 'not fraudulent.' Which of the following methods best describes the extraction and processing of this data for training a machine learning model within Snowflake?
A. Treat the unstructured log description as a categorical feature and directly apply one-hot encoding within Snowflake, then train a classification model. Due to high dimensionality perform PCA for dimensionality reduction before training.
B. Export the entire log data to an external machine learning platform (e.g., AWS SageMaker) and perform feature extraction, NLP processing, and model training there. Import the trained model back into Snowflake as a UDF for prediction.
C. Use a combination of regular expressions and natural language processing (NLP) techniques within Snowflake UDFs to extract key features such as transaction amounts, product categories, and sentiment scores from the log descriptions. Then, combine these extracted features with other structured data (e.g., user demographics) and train a classification model using these features. The NLP steps include tokenization, stop word removal, and TF-IDF vectorization.
D. Extract the entire log description field and train a word embedding model (e.g., Word2Vec) on the entire dataset. Average the word vectors for each transaction's log description to create a document vector. Train a classification model (e.g., Random Forest) on these document vectors within Snowflake.
E. Use regular expressions within a Snowflake UDF to extract relevant information (e.g., amount, item description) from the log descriptions. Convert extracted data into numerical features using one-hot encoding within the UDF. Then, train a model using the extracted numerical features directly within Snowflake using SQL extensions for machine learning.
正解:C
解説: (Pass4Test メンバーにのみ表示されます)

質問 6:
You are designing a feature engineering pipeline using Snowpark Feature Store for a fraud detection model. You have a transaction table in Snowflake. One crucial feature is the 'average_transaction_amount_last_7_days' for each customer. You want to implement this feature using Snowpark Python and materialize it in the Feature Store. You have the following Snowpark DataFrame 'transactions_df containing 'customer_id' and 'transaction_amount'. Which of the following code snippets correctly defines and registers this feature in the Snowpark Feature Store, ensuring efficient computation and storage?
A.

B.

C.

D.

E.

正解:E
解説: (Pass4Test メンバーにのみ表示されます)

質問 7:
A data scientist is analyzing website traffic data stored in Snowflake. The data includes daily page views for different pages. The data scientist suspects that the variance of page views for a particular page, 'home', has significantly increased recently. Which of the following steps and Snowflake SQL queries could be used to identify a potential change in the variance of 'home' page views over time (e.g., comparing variance before and after a specific date)? Select all that apply.

A. Option E
B. Option C
C. Option A
D. Option D
E. Option B
正解:A,B,D,E
解説: (Pass4Test メンバーにのみ表示されます)

質問 8:
You are building a machine learning model using Snowpark for Python and have a feature column called 'TRANSACTION AMOUNT' in your 'transaction_df DataFrame. This column contains some missing values ('NULL). Your model is sensitive to missing data'. You want to impute the missing values using the median "TRANSACTION AMOUNT, but ONLY for specific customer segments (e.g., customers with a 'CUSTOMER TIER of 'Gold' or 'Platinum'). For other customer tiers, you want to impute with the mean. Which of the following Snowpark Python code snippets BEST achieves this selective imputation?
A.

B.

C.

D.

E.

正解:E
解説: (Pass4Test メンバーにのみ表示されます)

質問 9:
You're developing a model to predict customer churn using Snowflake. Your dataset is large and continuously growing. You need to implement partitioning strategies to optimize model training and inference performance. You consider the following partitioning strategies: 1. Partitioning by 'customer segment (e.g., 'High-Value', 'Medium-Value', 'Low-Value'). 2. Partitioning by 'signup_date' (e.g., monthly partitions). 3. Partitioning by 'region' (e.g., 'North America', 'Europe', 'Asia'). Which of the following statements accurately describe the potential benefits and drawbacks of these partitioning strategies within a Snowflake environment, specifically in the context of model training and inference?
A. Partitioning by 'signup_date' is ideal for capturing temporal dependencies in churn behavior and allows for easy retraining of models with the latest data. It also naturally aligns with a walk-forward validation approach. However, it might not be effective if churn drivers are independent of signup date.
B. Implementing partitioning requires modifying existing data loading pipelines and may introduce additional overhead in data management. If the cost of partitioning outweighs the performance gains, it's better to rely on Snowflake's built-in micro-partitioning alone. Also, data skew in partition keys is a major concern.
C. Partitioning by 'customer_segment' is beneficial if churn patterns are significantly different across segments, allowing for training separate models for each segment. However, if any segment has very few churned customers, it may lead to overfitting or unreliable models for that segment.
D. Partitioning by 'region' is useful if churn is heavily influenced by geographic factors (e.g., local market conditions). It can improve query performance during both training and inference when filtering by region. However, it can create data silos, making it difficult to build a global churn model that considers interactions across regions. Furthermore, the 'region' column must have low cardinality.
E. Using clustering in Snowflake on top of partitioning will always improve query performance significantly and reduce compute costs irrespective of query patterns.
正解:A,B,C,D
解説: (Pass4Test メンバーにのみ表示されます)

一年間無料で問題集をアップデートするサービスを提供します。

弊社の商品をご購入になったことがあるお客様に一年間の無料更新サービスを提供いたします。弊社は毎日問題集が更新されたかどうかを確認しますから、もし更新されたら、弊社は直ちに最新版のDSA-C03問題集をお客様のメールアドレスに送信いたします。ですから、試験に関連する情報が変わったら、あなたがすぐに知ることができます。弊社はお客様がいつでも最新版のSnowflake DSA-C03学習教材を持っていることを保証します。

弊社のDSA-C03問題集のメリット

Pass4Testの人気IT認定試験問題集は的中率が高くて、100%試験に合格できるように作成されたものです。Pass4Testの問題集はIT専門家が長年の経験を活かして最新のシラバスに従って研究し出した学習教材です。弊社のDSA-C03問題集は100%の正確率を持っています。弊社のDSA-C03問題集は多肢選択問題、単一選択問題、ドラッグ とドロップ問題及び穴埋め問題のいくつかの種類を提供しております。

Pass4Testは効率が良い受験法を教えてさしあげます。弊社のDSA-C03問題集は精確に実際試験の範囲を絞ります。弊社のDSA-C03問題集を利用すると、試験の準備をするときに時間をたくさん節約することができます。弊社の問題集によって、あなたは試験に関連する専門知識をよく習得し、自分の能力を高めることができます。それだけでなく、弊社のDSA-C03問題集はあなたがDSA-C03認定試験に一発合格できることを保証いたします。

行き届いたサービス、お客様の立場からの思いやり、高品質の学習教材を提供するのは弊社の目標です。 お客様がご購入の前に、無料で弊社のDSA-C03試験「SnowPro Advanced: Data Scientist Certification Exam」のサンプルをダウンロードして試用することができます。PDF版とソフト版の両方がありますから、あなたに最大の便利を捧げます。それに、DSA-C03試験問題は最新の試験情報に基づいて定期的にアップデートされています。

弊社のSnowPro Advanced問題集を利用すれば必ず試験に合格できます。

Pass4TestのSnowflake DSA-C03問題集はIT認定試験に関連する豊富な経験を持っているIT専門家によって研究された最新バージョンの試験参考書です。Snowflake DSA-C03問題集は最新のSnowflake DSA-C03試験内容を含んでいてヒット率がとても高いです。Pass4TestのSnowflake DSA-C03問題集を真剣に勉強する限り、簡単に試験に合格することができます。弊社の問題集は100%の合格率を持っています。これは数え切れない受験者の皆さんに証明されたことです。100%一発合格!失敗一回なら、全額返金を約束します!

弊社は無料でSnowPro Advanced試験のDEMOを提供します。

Pass4Testの試験問題集はPDF版とソフト版があります。PDF版のDSA-C03問題集は印刷されることができ、ソフト版のDSA-C03問題集はどのパソコンでも使われることもできます。両方の問題集のデモを無料で提供し、ご購入の前に問題集をよく理解することができます。

簡単で便利な購入方法ご購入を完了するためにわずか2つのステップが必要です。弊社は最速のスピードでお客様のメールボックスに製品をお送りします。あなたはただ電子メールの添付ファイルをダウンロードする必要があります。

領収書について:社名入りの領収書が必要な場合には、メールで社名に記入して頂き送信してください。弊社はPDF版の領収書を提供いたします。

Snowflake SnowPro Advanced: Data Scientist Certification 認定 DSA-C03 試験問題:

1. You're developing a fraud detection system in Snowflake. You're using Snowflake Cortex to generate embeddings from transaction descriptions, aiming to cluster similar fraudulent transactions. Which of the following approaches are MOST effective for optimizing the performance and cost of generating embeddings for a large dataset of millions of transaction descriptions using Snowflake Cortex, especially considering the potential cost implications of generating embeddings at scale? Select two options.

A) Use a Snowflake Task to incrementally generate embeddings only for new transactions that have been added since the last embedding generation run.
B) Generate embeddings using snowflake-cortex-embed-text function, using the OPENAI embedding model
C) Implement caching mechanism based on a hash of transaction description if transaction description does not change then no need to recompute the emebeddings again.
D) Generate embeddings on the entire dataset every day to capture all potential fraudulent transactions and ensure the model is always up-to-date.
E) Create a materialized view containing pre-computed embeddings for all transaction descriptions.


2. Your team has deployed a machine learning model to Snowflake for predicting customer churn. You need to implement a robust metadata tagging strategy to track model lineage, performance metrics, and usage. Which of the following approaches are the MOST effective for achieving this within Snowflake, ensuring seamless integration with model deployment pipelines and facilitating automated retraining triggers based on data drift?

A) Relying solely on manual documentation and spreadsheets to track model metadata, as automated solutions introduce unnecessary complexity and potential errors.
B) Leveraging a third-party metadata management tool that integrates with Snowflake and provides a centralized repository for model metadata, lineage tracking, and data governance. This tool should support automated tag propagation and data drift monitoring. Use Snowflake external functions to trigger alerts based on metadata changes.
C) Storing model metadata in a separate relational database (e.g., PostgreSQL) and using Snowflake external tables to access the metadata information. Implement custom stored procedures to synchronize metadata between Snowflake and the external database.
D) Utilizing Snowflake's INFORMATION SCHEMA views to extract metadata about tables, views, and stored procedures, and then writing custom SQL scripts to generate reports and track model lineage. Combine this with Snowflake's data masking policies to control access to sensitive metadata.
E) Using Snowflake's built-in tag functionality to tag tables, views, and stored procedures related to the model. Implementing custom Python scripts using Snowflake's Python API (Snowpark) to automatically apply tags during model deployment and retraining based on predefined rules and data quality checks.


3. You are deploying a fraud detection model using Snowpark Container Services. The model requires a substantial amount of GPU memory. After deploying your service, you notice that it frequently crashes due to Out-Of-Memory (OOM) errors. You have verified that the container image itself is not the source of the problem. Which of the following strategies are most appropriate to mitigate these OOM errors when using Snowpark Container Services, assuming you want to minimize costs and complexity?

A) Increase the 'container.resources.memory' configuration setting in the service definition to a value significantly larger than the model's memory footprint. Monitor memory utilization and adjust as needed.
B) Implement a mechanism within your model's inference code to explicitly free up unused memory after each prediction. Use Python's 'gc.collect()' and ensure proper cleanup of large data structures. Configure a smaller 'container.resources.memory' allocation.
C) Ignore OOM errors and rely on the container service to automatically restart the container. The model will eventually process all requests.
D) Utilize CPU-based inference instead of GPU-based inference, as CPU inference is generally less memory-intensive. Convert the model to a format optimized for CPU inference (e.g., using ONNX). Reduce the 'container.resources.cpu' count.
E) Implement model parallelism across multiple containers, splitting the model's workload and data across them. Configure each container with a smaller 'container.resources.memory' allocation.


4. You are tasked with building a predictive model in Snowflake to identify high-value customers based on their transaction history. The 'CUSTOMER_TRANSACTIONS table contains a 'TRANSACTION_AMOUNT column. You need to binarize this column, categorizing transactions as 'High Value' if the amount is above a dynamically calculated threshold (the 90th percentile of transaction amounts) and 'Low Value' otherwise. Which of the following Snowflake SQL queries correctly achieves this binarization, leveraging window functions for threshold calculation and resulting in a 'CUSTOMER SEGMENT column?

A) Option E
B) Option C
C) Option A
D) Option D
E) Option B


5. You're analyzing the performance of two different AIB testing variants of an advertisement. You've collected the following data over a period of one week: Variant A: 1000 impressions, 50 conversions Variant B: 1100 impressions, 66 conversions Which of the following statements are TRUE regarding confidence intervals and statistical significance in this scenario?

A) If the 95% confidence interval for the conversion rate of Variant A is entirely above the 95% confidence interval for the conversion rate of Variant B, then Variant A is statistically better than Variant B.
B) A narrower confidence interval for the difference in conversion rates implies a higher degree of certainty about the estimated difference.
C) Increasing the sample size (number of impressions for each variant) will generally widen the confidence interval, making it more likely to contain zero.
D) Constructing a 95% confidence interval for the difference in conversion rates between Variant B and Variant A will allow you to assess if there is a statistically significant difference at the 5% significance level. If the confidence interval contains zero, there is no statistically significant difference.
E) Calculating separate confidence intervals for conversion rates A and B, and noting overlap, is an invalid method to infer statistical significance. One must construct confidence interval for the difference in means.


質問と回答:

質問 # 1
正解: A、C
質問 # 2
正解: B、E
質問 # 3
正解: A、B
質問 # 4
正解: B、C、E
質問 # 5
正解: B、D、E

0 お客様のコメント最新のコメント

メッセージを送る

あなたのメールアドレスは公開されません。必要な部分に * が付きます。

Pass4Test問題集を選ぶ理由は何でしょうか?

品質保証

Pass4Testは試験内容に応じて作り上げられて、正確に試験の内容を捉え、最新の97%のカバー率の問題集を提供することができます。

一年間の無料アップデート

Pass4Testは一年間で無料更新サービスを提供することができ、認定試験の合格に大変役に立ちます。もし試験内容が変われば、早速お客様にお知らせします。そして、もし更新版がれば、お客様にお送りいたします。

全額返金

お客様に試験資料を提供してあげ、勉強時間は短くても、合格できることを保証いたします。不合格になる場合は、全額返金することを保証いたします。

ご購入の前の試用

Pass4Testは無料でサンプルを提供することができます。無料サンプルのご利用によってで、もっと自信を持って認定試験に合格することができます。