最新なSnowflake DEA-C02問題集(354題)、真実試験の問題を全部にカバー!

Pass4Testは斬新なSnowflake SnowPro Advanced DEA-C02問題集を提供し、それをダウンロードしてから、DEA-C02試験をいつ受けても100%に合格できる!一回に不合格すれば全額に返金!

DEA-C02 actual test
  • 試験コード:DEA-C02
  • 試験名称:SnowPro Advanced: Data Engineer (DEA-C02)
  • 問題数:354 問題と回答
  • 最近更新時間:2025-05-22
  • PDF版 Demo
  • PC ソフト版 Demo
  • オンライン版 Demo
  • 価格:12900.00 5999.00  
質問 1:
A data engineer is tasked with processing a large dataset of customer orders using Snowpark Python. The dataset contains a column stored as a string in 'YYYY-MM-DD HH:MI:SS' format. They need to create a new DataFrame with only the orders placed in the month of January 2023. Which of the following code snippets achieves this most efficiently, considering potential data volume and query performance?
A.

B.

C.

D.

E.

正解:B
解説: (Pass4Test メンバーにのみ表示されます)

質問 2:
You need to create a UDF in Snowflake to perform complex data validation. This UDF must access an external API to retrieve validation rules based on the input data'. You want to ensure that sensitive API keys are not exposed within the UDF's code and that the external API call is made securely. Which of the following approaches is the MOST secure and appropriate for this scenario?
A. Hardcode the API key directly into the UDF's JavaScript code, obfuscating it with base64 encoding.
B. Use a Snowflake Secret to securely store the API key. Retrieve the secret within the UDF using the 'SYSTEM$GET_SECRET function, and use 'SECURITY INVOKER with caution or define the UDF as 'SECURITY DEFINER with appropriate role based access controls .
C. Store the API key as an environment variable within the UDF's JavaScript code. Snowflake automatically encrypts environment variables for security.
D. Store the API key in a Snowflake table with strict access controls, and retrieve it within the UDF using a SELECT statement. Use 'SECURITY INVOKER to ensure the UDF uses the caller's privileges when accessing the table.
E. Pass the API key as an argument to the UDF when it is called. Rely on the caller to provide the correct key and keep it secure.
正解:B
解説: (Pass4Test メンバーにのみ表示されます)

質問 3:
You have implemented a Snowpipe using auto-ingest to load data from an AWS S3 bucket. The pipe is configured to load data into a table with a 'DATE column ('TRANSACTION DATE'). The data files in S3 contain a date field in the format 'YYYYMMDD'. Occasionally, you observe data loading failures in Snowpipe with the error message indicating an issue converting the string to a date. The 'FILE FORMAT' definition includes 'DATE FORMAT = 'YYYYMMDD''. Furthermore, you are also noticing that after a while, some files are not being ingested even though they are present in the S3 bucket. How to effectively diagnose and resolve these issues?
A. The issue may arise if the time zone of the Snowflake account does not match the time zone of your data in AWS S3. Try setting the 'TIMEZONE parameter in the FILE FORMAT definition. For files that are not being ingested, manually refresh the Snowpipe with 'ALTER PIPE ... REFRESH'.
B. The error could be due to invalid characters in the source data files. Implement data cleansing steps to remove invalid characters from the date fields before uploading to S3. For files not being ingested, check S3 event notifications for missing or failed events.
C. The 'DATE FORMAT parameter is case-sensitive. Ensure it matches the case of the incoming data. Also, check the 'VALIDATION MODE and ERROR parameters to ensure error handling is appropriately configured for files with date format errors. For the files that are not ingested use 'SYSTEM$PIPE to find the cause of the issue.
D. Snowflake's auto-ingest feature has limitations and may not be suitable for inconsistent data formats. Consider using the Snowpipe REST API to implement custom error handling and data validation logic. Monitor the Snowflake event queue to ensure events are being received.
E. Verify that the 'DATE FORMAT is correct and that all files consistently adhere to this format. Check for corrupted files in S3 that may be preventing Snowpipe from processing subsequent files. Additionally, review the Snowpipe error notifications in Snowflake to identify the root cause of ingestion failures. Use 'SYSTEM$PIPE to troubleshoot the files not ingested
正解:C,E
解説: (Pass4Test メンバーにのみ表示されます)

質問 4:
A data engineer is facing performance issues with a complex analytical query in Snowflake. The query joins several large tables and uses multiple window functions. The query profile indicates that a significant amount of time is spent in the 'Remote Spill' stage. This means the data from one of the query stages is spilling to the remote disk. What are the possible root causes for 'Remote Spill' and what steps can be taken to mitigate this issue? Select two options.
A. The data being queried is stored in a non-Snowflake database, making it difficult to optimize the join.
B. The window functions are operating on large partitions of data, exceeding the available memory on the compute nodes. Try to reduce the partition size by pre- aggregating the data or using filtering before applying the window functions.
C. The 'Remote Spill' indicates network latency issues between compute nodes. There is nothing the data engineer can do to fix this; it is an infrastructure issue.
D. The virtual warehouse is not appropriately sized for the volume of data and complexity of the query. Increasing the virtual warehouse size might provide sufficient memory to avoid spilling.
E. The query is using a non-optimal join strategy. Review the query profile and consider using join hints to force a different join order or algorithm.
正解:B,D
解説: (Pass4Test メンバーにのみ表示されます)

質問 5:
A data warehousing team is experiencing inconsistent query performance on a large fact table C SALES FACT) that is updated daily. Some queries involving complex joins and aggregations take significantly longer to execute than others, even when run with the same virtual warehouse size. You suspect that the query result cache is not being effectively utilized due to variations in query syntax and the dynamic nature of the data'. Which of the following strategies could you implement to maximize the effectiveness of the query result cache and improve query performance consistency? Assume virtual warehouse size is large and the data is skewed across days.
A. Create a separate virtual warehouse specifically for running these queries. This will isolate the cache and prevent it from being invalidated by other queries.
B. Implement query tagging to standardize query syntax. By applying consistent tags to queries, you can ensure that similar queries are recognized as identical and reuse cached results.
C. Implement a data masking policy on the 'SALES_FACT table. Data masking will reduce the size of the data that needs to be cached, improving cache utilization.
D. Optimize the 'SALES_FACT table by clustering it on the most frequently used filter columns and enabling automatic clustering. This will improve data locality and reduce the amount of data that needs to be scanned.
E. Use stored procedures with parameters to encapsulate the queries. This will ensure that the query syntax is consistent, regardless of the specific parameters used.
正解:D,E
解説: (Pass4Test メンバーにのみ表示されます)

質問 6:
You are using the Snowflake Spark connector to update records in a Snowflake table based on data from a Spark DataFrame. The Snowflake table 'CUSTOMER' has columns 'CUSTOMER ID' (primary key), 'NAME, and 'ADDRESS'. You have a Spark DataFrame with updated 'NAME and 'ADDRESS' values for some customers. To optimize performance and minimize data transfer, which of the following strategies can you combine with a temporary staging table to perform an efficient update?
A. Broadcast the Spark DataFrame to all executor nodes, then use a UDF to execute the 'UPDATE' statement for each row directly from Spark.
B. Use Spark's foreachPartition to batch update statements and execute on each partition. This will help with efficient data transfer and avoid single row based updates.
C. Write the Spark DataFrame to a temporary table in Snowflake using MERGE. Use the WHEN MATCHED clause for Update the target table based on updates from staging table and finally drop the staging table
D. Iterate through each row in the Spark DataFrame and execute an individual 'UPDATE statement against the 'CUSTOMER table in Snowflake. Use the 'CUSTOMER_ID in the 'WHERE clause.
E. Write the Spark DataFrame to a temporary table in Snowflake. Then, execute an 'UPDATE statement in Snowflake joining the temporary table with the 'CUSTOMER table using the 'CUSTOMER_ID to update the 'NAME and 'ADDRESS' columns. Finally, drop the temporary table.
正解:C,E
解説: (Pass4Test メンバーにのみ表示されます)

質問 7:
You are responsible for monitoring the performance of a Snowflake data pipeline that loads data from S3 into a Snowflake table named 'SALES DATA. You notice that the COPY INTO command consistently takes longer than expected. You want to implement telemetry to proactively identify the root cause of the performance degradation. Which of the following methods, used together, provide the MOST comprehensive telemetry data for troubleshooting the COPY INTO performance?
A. Query the 'COPY_HISTORY view and the view in 'ACCOUNT_USAG Also, check the S3 bucket for throttling errors.
B. Query the ' LOAD_HISTORY function and monitor the network latency between S3 and Snowflake using an external monitoring tool.
C. Use Snowflake's partner connect integrations to monitor the virtual warehouse resource consumption and query the 'VALIDATE function to ensure data quality before loading.
D. Query the 'COPY HISTORY view in the 'INFORMATION SCHEMA' and monitor CPU utilization of the virtual warehouse using the Snowflake web I-Jl.
E. Query the 'COPY HISTORY view in the 'INFORMATION SCHEMA' and enable Snowflake's query profiling for the COPY INTO statement.
正解:A,E
解説: (Pass4Test メンバーにのみ表示されます)

質問 8:
You are developing a JavaScript UDF in Snowflake to perform complex data validation on incoming data'. The UDF needs to validate multiple fields against different criteria, including checking for null values, data type validation, and range checks. Furthermore, you need to return a JSON object containing the validation results for each field, indicating whether each field is valid or not and providing an error message if invalid. Which approach is the MOST efficient and maintainable way to structure your JavaScript UDF to achieve this?
A. Define a JavaScript object containing validation rules and corresponding validation functions. Iterate through the object and apply the rules to the input data, collecting the validation results in a JSON object. This object is returned as a string.
B. Utilize a JavaScript library like Lodash or Underscore.js within the UDF to perform data manipulation and validation. Return a JSON string containing the validation results.
C. Use a single, monolithic JavaScript function with nested if-else statements to handle all validation logic. Return a JSON string containing the validation results.
D. Create separate JavaScript functions for each validation check (e.g., 'isNull', 'isValidType', 'isWithinRange'). Call these functions from the main UDF and aggregate the results into a JSON object.
E. Directly embed SQL queries within the JavaScript UDF to perform data validation checks using Snowflake's built-in functions. Return a JSON string containing the validation results.
正解:A
解説: (Pass4Test メンバーにのみ表示されます)

質問 9:
You are configuring cross-cloud replication for a Snowflake database named 'SALES DB' from an AWS (us-east-I) account to an Azure (eastus) account. You have already set up the necessary network policies and security integrations. However, replication is failing with the following error: 'Replication of database SALES DB failed due to insufficient privileges on object 'SALES DB.PUBLIC.ORDERS'.' What is the MOST LIKELY cause of this issue, and how would you resolve it? (Assume the replication group and target database exist).
A. The target Azure account does not have sufficient storage capacity. Increase the storage quota for the Azure account.
B. The network policy is blocking access to the ORDERS table. Update the network policy to allow access to the ORDERS table.
C. The replication group is missing the 'ORDERS' table. Alter the replication group to include the 'ORDERS' table: 'ALTER REPLICATION GROUP ADD DATABASE SALES DB;'
D. The replication group does not have the necessary permissions to access the 'ORDERS' table in the AWS account. Grant the 'OWNERSHIP' privilege on the 'ORDERS table to the replication group: 'GRANT OWNERSHIP ON TABLE SALES DB.PUBLIC.ORDERS TO REPLICATION GROUP
E. The user account performing the replication does not have the 'ACCOUNTADMIN' role in the AWS account. Grant the 'ACCOUNTADMIN' role to the user.
正解:D
解説: (Pass4Test メンバーにのみ表示されます)

弊社は無料でSnowPro Advanced試験のDEMOを提供します。

Pass4Testの試験問題集はPDF版とソフト版があります。PDF版のDEA-C02問題集は印刷されることができ、ソフト版のDEA-C02問題集はどのパソコンでも使われることもできます。両方の問題集のデモを無料で提供し、ご購入の前に問題集をよく理解することができます。

簡単で便利な購入方法ご購入を完了するためにわずか2つのステップが必要です。弊社は最速のスピードでお客様のメールボックスに製品をお送りします。あなたはただ電子メールの添付ファイルをダウンロードする必要があります。

領収書について:社名入りの領収書が必要な場合には、メールで社名に記入して頂き送信してください。弊社はPDF版の領収書を提供いたします。

弊社のDEA-C02問題集のメリット

Pass4Testの人気IT認定試験問題集は的中率が高くて、100%試験に合格できるように作成されたものです。Pass4Testの問題集はIT専門家が長年の経験を活かして最新のシラバスに従って研究し出した学習教材です。弊社のDEA-C02問題集は100%の正確率を持っています。弊社のDEA-C02問題集は多肢選択問題、単一選択問題、ドラッグ とドロップ問題及び穴埋め問題のいくつかの種類を提供しております。

Pass4Testは効率が良い受験法を教えてさしあげます。弊社のDEA-C02問題集は精確に実際試験の範囲を絞ります。弊社のDEA-C02問題集を利用すると、試験の準備をするときに時間をたくさん節約することができます。弊社の問題集によって、あなたは試験に関連する専門知識をよく習得し、自分の能力を高めることができます。それだけでなく、弊社のDEA-C02問題集はあなたがDEA-C02認定試験に一発合格できることを保証いたします。

行き届いたサービス、お客様の立場からの思いやり、高品質の学習教材を提供するのは弊社の目標です。 お客様がご購入の前に、無料で弊社のDEA-C02試験「SnowPro Advanced: Data Engineer (DEA-C02)」のサンプルをダウンロードして試用することができます。PDF版とソフト版の両方がありますから、あなたに最大の便利を捧げます。それに、DEA-C02試験問題は最新の試験情報に基づいて定期的にアップデートされています。

一年間無料で問題集をアップデートするサービスを提供します。

弊社の商品をご購入になったことがあるお客様に一年間の無料更新サービスを提供いたします。弊社は毎日問題集が更新されたかどうかを確認しますから、もし更新されたら、弊社は直ちに最新版のDEA-C02問題集をお客様のメールアドレスに送信いたします。ですから、試験に関連する情報が変わったら、あなたがすぐに知ることができます。弊社はお客様がいつでも最新版のSnowflake DEA-C02学習教材を持っていることを保証します。

弊社のSnowPro Advanced問題集を利用すれば必ず試験に合格できます。

Pass4TestのSnowflake DEA-C02問題集はIT認定試験に関連する豊富な経験を持っているIT専門家によって研究された最新バージョンの試験参考書です。Snowflake DEA-C02問題集は最新のSnowflake DEA-C02試験内容を含んでいてヒット率がとても高いです。Pass4TestのSnowflake DEA-C02問題集を真剣に勉強する限り、簡単に試験に合格することができます。弊社の問題集は100%の合格率を持っています。これは数え切れない受験者の皆さんに証明されたことです。100%一発合格!失敗一回なら、全額返金を約束します!

Snowflake SnowPro Advanced: Data Engineer (DEA-C02) 認定 DEA-C02 試験問題:

1. You are developing a Snowpark Python application that processes data from a large table. You want to optimize the performance by leveraging Snowpark's data skipping capabilities. The table 'CUSTOMER ORDERS is partitioned by 'ORDER DATE. Which of the following Snowpark operations will MOST effectively utilize data skipping during data transformation?

A) Applying a filter >= '2023-01-01') & (col('ORDER_DATE') <= '2023-03-31'))' after performing a complex join operation.
B) Creating a new DataFrame with only the columns needed using 'ORDER_DATE', 'ORDER_AMOUNT')' before any filtering operations.
C) Applying a filter '2023-01-01') & '2023-03-31'))' before performing any join or aggregation operations.
D) Using the 'cache()' method on the DataFrame before filtering by 'ORDER DATE
E) Executing 'df.collect()' to load the entire table into the client's memory before filtering.


2. A Data Engineer needs to implement dynamic data masking for a PII column named in a table 'CUSTOMERS. The masking policy should apply only to users with the role 'ANALYST. If the user is not an 'ANALYST, the full 'EMAIL' address should be displayed. Which of the following is the MOST efficient and secure way to achieve this using Snowflake's masking policies?

A) Option E
B) Option C
C) Option A
D) Option D
E) Option B


3. You have configured a Kafka Connector to load JSON data into a Snowflake table named 'ORDERS. The JSON data contains nested structures. However, Snowflake is only receiving the top- level fields, and the nested fields are being ignored. Which configuration option within the Kafka Connector needs to be adjusted to correctly flatten and load the nested JSON data into Snowflake?

A) Enable the 'snowflake.ingest.stage' property and set it to a Snowflake internal stage.
B) Use the 'transforms' configuration with the 'org.apache.kafka.connect.transforms.ExtractField$Value' transformation to extract specific fields.
C) Set the 'value.converter.schemas.enable' property to 'true'.
D) Apply the 'org.apache.kafka.connect.transforms.Flatten' transformation to the 'transforms' configuration.
E) Configure the 'snowflake.data.field.name' property to specify the column in the Snowflake table where the entire JSON should be loaded as a VARIANT.


4. You are using Snowpipe with an external function to transform data as it is loaded into Snowflake. The Snowpipe is configured to load data from AWS SQS and S3. You observe that some messages are not being processed by the external function, and the data is not appearing in the target table. You have verified that the Snowpipe is enabled and the SQS queue is receiving notifications. Analyze the following potential causes and select all that apply:

A) The IAM role associated with the Snowflake stage does not have permission to invoke the external function. Verify that the role has the necessary permissions in AWS IAM.
B) The data being loaded into Snowflake does not conform to the expected format for the external function. Validate the structure and content of the data before loading it into Snowflake.
C) The AWS Lambda function (or other external function) does not have sufficient memory or resources to process the incoming data volume, leading to function invocations being throttled and messages remaining unprocessed.
D) The Snowpipe configuration is missing a setting that allows the external function to access the data files in S3. Ensure that the storage integration is configured to allow access to the S3 location.
E) The external function is experiencing timeouts or errors, causing it to reject some records. Review the external function logs and increase the timeout settings if necessary.


5. You have a table named 'EMPLOYEES with a retention period of 1 day. You accidentally deleted several important rows from this table, but you need to recover the data'. You know the deletion occurred 25 hours ago. What actions should be taken to attempt to recover the deleted data, and what outcome can you expect? Assume you are working in an Enterprise edition of Snowflake account.

A) Attempt to use UNDROP TABLE command if the table was dropped. Expect the recovery to be successful as long as the deletion occurred within the data retention period.
B) Since its Enterprise edition of Snowflake account, the Time travel and cloning will work with 7 days retention period, hence attemtp clone table using Time Travel and recover data successfully
C) Attempt to clone the table using Time Travel to a point in time before the deletion, then extract the deleted rows. Expect the recovery to be successful as long as the deletion occurred within the data retention period.
D) Attempt to use Time Travel to query the table before the deletion and re-insert the deleted rows. Expect the recovery to be successful as long as the deletion occurred within the data retention period.
E) Attempt to use Time Travel or cloning to recover the data. Expect the recovery to fail because the deletion occurred outside the I-day data retention period.


質問と回答:

質問 # 1
正解: C
質問 # 2
正解: E
質問 # 3
正解: D
質問 # 4
正解: A、B、C、E
質問 # 5
正解: E

0 お客様のコメント最新のコメント

メッセージを送る

あなたのメールアドレスは公開されません。必要な部分に * が付きます。

Pass4Test問題集を選ぶ理由は何でしょうか?

品質保証

Pass4Testは試験内容に応じて作り上げられて、正確に試験の内容を捉え、最新の97%のカバー率の問題集を提供することができます。

一年間の無料アップデート

Pass4Testは一年間で無料更新サービスを提供することができ、認定試験の合格に大変役に立ちます。もし試験内容が変われば、早速お客様にお知らせします。そして、もし更新版がれば、お客様にお送りいたします。

全額返金

お客様に試験資料を提供してあげ、勉強時間は短くても、合格できることを保証いたします。不合格になる場合は、全額返金することを保証いたします。

ご購入の前の試用

Pass4Testは無料でサンプルを提供することができます。無料サンプルのご利用によってで、もっと自信を持って認定試験に合格することができます。