最新なSnowflake DAA-C01問題集(309題)、真実試験の問題を全部にカバー!

Pass4Testは斬新なSnowflake SnowPro Advanced DAA-C01問題集を提供し、それをダウンロードしてから、DAA-C01試験をいつ受けても100%に合格できる!一回に不合格すれば全額に返金!

DAA-C01 actual test
  • 試験コード:DAA-C01
  • 試験名称:SnowPro Advanced: Data Analyst Certification Exam
  • 問題数:309 問題と回答
  • 最近更新時間:2025-05-24
  • PDF版 Demo
  • PC ソフト版 Demo
  • オンライン版 Demo
  • 価格:12900.00 5999.00  
質問 1:
A marketing company is analyzing customer purchase data stored in Snowflake to understand which customer demographics are most likely to purchase a newly launched product. The 'CUSTOMERS table has columns: 'customer_id', 'age' , 'gender' , 'location' , and 'household income'. The 'PURCHASES' table has columns: 'customer_id', 'purchase_date', and 'product id'. Which SQL query would most effectively identify the top three age groups with the highest purchase rate for the new product (product_id = 'NEW PRODUCT')?

A. Option E
B. Option C
C. Option A
D. Option D
E. Option B
正解:D
解説: (Pass4Test メンバーにのみ表示されます)

質問 2:
You are analyzing the query execution plan of a complex data transformation pipeline in Snowflake. The plan shows a 'Remote Join' operation with high execution time. The two tables involved, 'CUSTOMER and 'ORDERS' , reside in different Snowflake accounts, and the join is performed on the 'CUSTOMER ID' column. Which of the following actions would MOST effectively optimize this query and reduce the 'Remote Join' execution time?
A. Implement data filtering on the 'CUSTOMER table before the 'Remote Join' to reduce the amount of data transferred across accounts. Using temporary table can be used for this task.
B. Ensure both 'CUSTOMER and 'ORDERS tables have the same clustering key, prioritizing 'CUSTOMER IDS.
C. Increase the warehouse size of the account containing the 'ORDERS' table to improve its processing speed.
D. Create a materialized view in the ORDERS account that pre-aggregates the data needed for the join to reduce the data size sent over the network for remote join.
E. Replicate the smaller table (either 'CUSTOMER or 'ORDERS, based on size) to the same Snowflake account as the larger table to eliminate the remote join.
正解:A,E
解説: (Pass4Test メンバーにのみ表示されます)

質問 3:
You are building a sales performance dashboard in Snowflake for a retail company. The data includes sales transactions, product information, and customer demographics. You need to enable users to drill down from regional sales summaries to individual store sales and then to customer-level details within the dashboard. Which of the following Snowflake features and dashboard design principles are CRUCIAL for achieving this interactive drill-down capability with optimal performance?
A. Relying solely on the dashboard's built-in filtering capabilities and avoiding any pre-aggregation or optimization in Snowflake.
B. Creating a stored procedure in Snowflake that dynamically generates SQL queries based on user interactions within the dashboard.
C. Exporting the data to an external BI tool and leveraging its drill-down features. Data can be exported to the external tool daily.
D. Creating multiple dashboards, one for each level of granularity (region, store, customer), and linking them together with navigation buttons.
E. Using parameterized views in Snowflake and configuring the dashboard to pass parameters dynamically based on user selections. Ensuring proper clustering keys are defined on relevant tables.
正解:E
解説: (Pass4Test メンバーにのみ表示されます)

質問 4:
You have a Snowflake environment where different data analysts run a variety of ad-hoc queries against the same set of tables. You've noticed inconsistent query performance, with some queries running quickly and others taking much longer despite having similar logic. To better manage costs and optimize performance, which of the following strategies would be MOST effective in leveraging virtual warehouse caching and resource management in Snowflake? (Select TWO)
A. Disable result caching globally at the account level to ensure that all queries always retrieve the most up-to-date data.
B. Implement a single, large virtual warehouse shared by all data analysts to maximize resource utilization and caching benefits.
C. Use resource monitors to limit the credit usage of individual virtual warehouses or user groups to control costs and prevent runaway queries.
D. Configure the 'AUTO SUSPEND parameter on all virtual warehouses to be a very short duration (e.g., 60 seconds) to minimize costs when the warehouse is idle.
E. Create separate virtual warehouses for different groups of analysts or types of queries to isolate workloads and prevent resource contention.
正解:C,E
解説: (Pass4Test メンバーにのみ表示されます)

質問 5:
You're tasked with building a data model in Snowflake for a retail company. The company has data on products ('PRODUCTS), sales transactions ('SALES), and customer demographics ('CUSTOMERS). You need to design a star schema to support efficient analysis of sales performance by product category and customer segment. Which of the following statements accurately describes the recommended table design and relationships within the star schema for this scenario?
A. Design a fact table CSALES_FACT) with foreign keys to dimension tables for 'PRODUCTS', 'CUSTOMERS, and a DATE' dimension. The 'SALES_FACT table should contain measures such as 'SALES AMOUNT and 'QUANTITY SOLD.
B. create separate fact tables for each product category (e.g., and link them to the 'CUSTOMERS' dimension table.
C. Create a single, denormalized table containing all product, sales, and customer information to maximize query performance.
D. Maintain the original normalized tables ('PRODUCTS', 'SALES', 'CUSTOMERS') and create views that join these tables as needed for reporting purposes.
E. Use a snowflake schema design, where the dimension tables (e.g., 'PRODUCTS', 'CUSTOMERS) are further normalized into related tables to reduce data redundancy.
正解:A,E
解説: (Pass4Test メンバーにのみ表示されます)

質問 6:
You are tasked with creating a dashboard in Snowsight to visualize sales data'. You have a table 'SALES DATA' with columns 'ORDER_DATE (DATE), 'PRODUCT CATEGORY (VARCHAR), 'SALES_AMOUNT (NUMBER), and 'REGION' (VARCHAR). The business requirements include the following: 1. Display total sales amount by product category in a pie chart. 2. Display a table showing sales amount for each region for a user-selected date range. 3. Allow the user to filter both visualizations by a specific region.
Which of the following approaches would BEST satisfy these requirements using Snowsight dashboards and features?
A. Create a single Snowsight dashboard with two charts: a pie chart showing total sales by product category using the query 'SELECT PRODUCT_CATEGORY, SUM(SALES AMOUNT) FROM SALES DATA WHERE REGION = $REGION GROUP BY PRODUCT_CATEGORY, and a table showing regional sales using the query 'SELECT REGION, FROM SALES_DATA WHERE ORDER_DATE BETWEEN $START_DATE AND $END_DATE AND REGION = $REGION GROUP BY REGION'. Define three dashboard variables: 'REGION' (Dropdown), 'START DATE (Date), and 'END DATE (Date).
B. Create a single Snowsight dashboard with a Python chart for product category sales, querying data using Snowflake Connector, and a table showing regional sales using SQL query. No dashboard variables are needed, as the Python script handles all filtering.
C. Create two separate dashboards: one for the pie chart and another for the table. Use a global session variable to store the selected region and date range, and access it in the SQL queries for both dashboards.
D. Create two separate charts: a pie chart for product category sales and a table for regional sales. Use the same filter on the dashboard for region, and manually enter the date range in the SQL query for the table chart.
E. Create a view with all calculations of the total sale amount, grouping by product category and region. Then create the dashboard with charts based off of this view. This will allow for easier modification if the business requirements change.
正解:A
解説: (Pass4Test メンバーにのみ表示されます)

弊社は無料でSnowPro Advanced試験のDEMOを提供します。

Pass4Testの試験問題集はPDF版とソフト版があります。PDF版のDAA-C01問題集は印刷されることができ、ソフト版のDAA-C01問題集はどのパソコンでも使われることもできます。両方の問題集のデモを無料で提供し、ご購入の前に問題集をよく理解することができます。

簡単で便利な購入方法ご購入を完了するためにわずか2つのステップが必要です。弊社は最速のスピードでお客様のメールボックスに製品をお送りします。あなたはただ電子メールの添付ファイルをダウンロードする必要があります。

領収書について:社名入りの領収書が必要な場合には、メールで社名に記入して頂き送信してください。弊社はPDF版の領収書を提供いたします。

弊社のSnowPro Advanced問題集を利用すれば必ず試験に合格できます。

Pass4TestのSnowflake DAA-C01問題集はIT認定試験に関連する豊富な経験を持っているIT専門家によって研究された最新バージョンの試験参考書です。Snowflake DAA-C01問題集は最新のSnowflake DAA-C01試験内容を含んでいてヒット率がとても高いです。Pass4TestのSnowflake DAA-C01問題集を真剣に勉強する限り、簡単に試験に合格することができます。弊社の問題集は100%の合格率を持っています。これは数え切れない受験者の皆さんに証明されたことです。100%一発合格!失敗一回なら、全額返金を約束します!

一年間無料で問題集をアップデートするサービスを提供します。

弊社の商品をご購入になったことがあるお客様に一年間の無料更新サービスを提供いたします。弊社は毎日問題集が更新されたかどうかを確認しますから、もし更新されたら、弊社は直ちに最新版のDAA-C01問題集をお客様のメールアドレスに送信いたします。ですから、試験に関連する情報が変わったら、あなたがすぐに知ることができます。弊社はお客様がいつでも最新版のSnowflake DAA-C01学習教材を持っていることを保証します。

弊社のDAA-C01問題集のメリット

Pass4Testの人気IT認定試験問題集は的中率が高くて、100%試験に合格できるように作成されたものです。Pass4Testの問題集はIT専門家が長年の経験を活かして最新のシラバスに従って研究し出した学習教材です。弊社のDAA-C01問題集は100%の正確率を持っています。弊社のDAA-C01問題集は多肢選択問題、単一選択問題、ドラッグ とドロップ問題及び穴埋め問題のいくつかの種類を提供しております。

Pass4Testは効率が良い受験法を教えてさしあげます。弊社のDAA-C01問題集は精確に実際試験の範囲を絞ります。弊社のDAA-C01問題集を利用すると、試験の準備をするときに時間をたくさん節約することができます。弊社の問題集によって、あなたは試験に関連する専門知識をよく習得し、自分の能力を高めることができます。それだけでなく、弊社のDAA-C01問題集はあなたがDAA-C01認定試験に一発合格できることを保証いたします。

行き届いたサービス、お客様の立場からの思いやり、高品質の学習教材を提供するのは弊社の目標です。 お客様がご購入の前に、無料で弊社のDAA-C01試験「SnowPro Advanced: Data Analyst Certification Exam」のサンプルをダウンロードして試用することができます。PDF版とソフト版の両方がありますから、あなたに最大の便利を捧げます。それに、DAA-C01試験問題は最新の試験情報に基づいて定期的にアップデートされています。

Snowflake SnowPro Advanced: Data Analyst Certification 認定 DAA-C01 試験問題:

1. A healthcare provider needs to create a dashboard displaying patient data for research purposes. They have Row Access Policies in place to restrict data access based on the researcher's assigned study group. They also have Dynamic Data Masking applied to Personally Identifiable Information (PII) columns like 'PATIENT NAME' and 'PATIENT ADDRESS'. The research dashboard needs to display aggregated, de-identified data for all study groups, but also needs to provide a drill-down capability where authorized researchers can view the PII for patients within their assigned study group. Which combination of Snowflake features is most suitable to implement this complex data access and presentation requirement? (Choose two)

A) Create a secure view that combines the patient data with aggregation functions, removing identifying information from the primary display. The secure view will automatically respect the Row Access Policies and Dynamic Data Masking rules.
B) Use a stored procedure with 'EXECUTE AS OWNER rights to bypass the Row Access Policies and Dynamic Data Masking during the initial data retrieval for the aggregated dashboard view.
C) Grant the 'researcher role the 'APPLY MASKING POLICY privilege for the 'PATIENT_NAME and 'PATIENT_ADDRESS' columns in the patient data table.
D) Implement a separate 'drill-down' view that includes the PII columns but is protected by the Row Access Policy. Researchers will only be able to access PII for their assigned study group through this view.
E) Create a dynamic data masking policy with a CASE statement. If the current role is an authorized 'drill-down' role, the policy reveals the actual value. Otherwise it displays 'REDACTED'.


2. You have a Snowflake environment where different data analysts run a variety of ad-hoc queries against the same set of tables. You've noticed inconsistent query performance, with some queries running quickly and others taking much longer despite having similar logic. To better manage costs and optimize performance, which of the following strategies would be MOST effective in leveraging virtual warehouse caching and resource management in Snowflake? (Select TWO)

A) Disable result caching globally at the account level to ensure that all queries always retrieve the most up-to-date data.
B) Implement a single, large virtual warehouse shared by all data analysts to maximize resource utilization and caching benefits.
C) Use resource monitors to limit the credit usage of individual virtual warehouses or user groups to control costs and prevent runaway queries.
D) Configure the 'AUTO SUSPEND parameter on all virtual warehouses to be a very short duration (e.g., 60 seconds) to minimize costs when the warehouse is idle.
E) Create separate virtual warehouses for different groups of analysts or types of queries to isolate workloads and prevent resource contention.


3. You are working on a data ingestion pipeline that loads data from a CSV file into a Snowflake table called The CSV file occasionally contains invalid characters in the 'Email' column (e.g., spaces, non-ASCII characters). You want to ensure data integrity and prevent the entire load from failing due to these errors. Which of the following strategies, used in conjunction, would BEST handle this situation during the COPY INTO command and maintain data quality?

A) Use a file format with 'VALIDATE UTF8 = TRUE, and 'ON ERROR='SKIP FILE". Create a separate stage containing invalid data to be handled at a later stage with another transformation job
B) Use the 'ON ERROR = 'SKIP FILE" option in the 'COPY INTO' command and then run a subsequent SQL query to identify and correct any invalid email addresses in the 'EmployeeData' table.
C) Use the ERROR = 'SKIP FILE" option in the 'COPY INTO' command along with a file format that specifies 'TRIM SPACE = TRUE and 'ENCODING ='UTF8".
D) Use the 'ON ERROR = 'CONTINUE" option in the 'COPY INTO' command. Create a separate error queue table and configure the 'COPY INTO' command to automatically insert error records into the queue.
E) Employ the 'VALIDATE function during the 'COPY INTO command to identify erroneous Email columns and use the 'ON ERROR = 'CONTINUE" along with using file format that specifies 'TRIM_SPACE = TRUE and ENCODING = 'UTF8".


4. You are investigating a performance bottleneck in a frequently used Snowflake query. You suspect the bottleneck might be due to data skew in a particular table. Which Snowflake system function and query combination would be the MOST efficient way to collect data to diagnose data skew on the 'orders' table, specifically for the column?

A)

B)

C)

D)

E)


5. Consider a Snowflake table 'USER EVENTS' with a 'VARIANT' column named 'event_data' containing JSON objects representing user activity. The JSON structure varies significantly across rows. You need to extract all the distinct event types from this data'. Which of the following Snowflake queries is the most efficient way to achieve this, handling potential null or missing 'event_type' fields gracefully and avoiding errors? Assume the volume of data is very large.

A)

B)

C)

D)

E)


質問と回答:

質問 # 1
正解: A、D
質問 # 2
正解: C、E
質問 # 3
正解: D、E
質問 # 4
正解: B
質問 # 5
正解: C

0 お客様のコメント最新のコメント

メッセージを送る

あなたのメールアドレスは公開されません。必要な部分に * が付きます。

Pass4Test問題集を選ぶ理由は何でしょうか?

品質保証

Pass4Testは試験内容に応じて作り上げられて、正確に試験の内容を捉え、最新の97%のカバー率の問題集を提供することができます。

一年間の無料アップデート

Pass4Testは一年間で無料更新サービスを提供することができ、認定試験の合格に大変役に立ちます。もし試験内容が変われば、早速お客様にお知らせします。そして、もし更新版がれば、お客様にお送りいたします。

全額返金

お客様に試験資料を提供してあげ、勉強時間は短くても、合格できることを保証いたします。不合格になる場合は、全額返金することを保証いたします。

ご購入の前の試用

Pass4Testは無料でサンプルを提供することができます。無料サンプルのご利用によってで、もっと自信を持って認定試験に合格することができます。